The q-exponential family in statistical physics
نویسنده
چکیده
The notion of generalised exponential family is considered in the restricted context of nonextensive statistical physics. Examples are given of models belonging to this family. In particular, the q-Gaussians are discussed and it is shown that the configurational probability distributions of the microcanonical ensemble belong to the q-exponential family.
منابع مشابه
Review of the Applications of Exponential Family in Statistical Inference
In this paper, after introducing exponential family and a history of work done by researchers in the field of statistics, some applications of this family in statistical inference especially in estimation problem,statistical hypothesis testing and statistical information theory concepts will be discussed.
متن کاملGeometry of q-Exponential Family of Probability Distributions
The Gibbs distribution of statistical physics is an exponential family of probability distributions, which has a mathematical basis of duality in the form of the Legendre transformation. Recent studies of complex systems have found lots of distributions obeying the power law rather than the standard Gibbs type distributions. The Tsallis q-entropy is a typical example capturing such phenomena. W...
متن کاملTsallis distributions and 1/f noise from nonlinear stochastic differential equations.
Probability distributions that emerge from the formalism of nonextensive statistical mechanics have been applied to a variety of problems. In this article we unite modeling of such distributions with the model of widespread 1/f noise. We propose a class of nonlinear stochastic differential equations giving both the q-exponential or q-Gaussian distributions of signal intensity, revealing long-ra...
متن کاملGeneralization of the Lie-Trotter Product Formula for q-Exponential Operators
This formula has been central in the development of path integral approaches to quantum theory, stochastic theory, and in quantum statistical mechanics [1, 2]. In particular, Suzuki has employed this to develop quantum statistical Monte Carlo methods [3, 4], general theory of path integrals with application to many-body theories and statistical physics [5], and more recently to mathematical phy...
متن کاملq-exponential distribution in urban agglomeration.
Usually, the studies of distributions of city populations have been reduced to power laws. In such analyses, a common practice is to consider cities with more than one hundred thousand inhabitants. Here, we argue that the distribution of cities for all ranges of populations can be well described by using a q-exponential distribution. This function, which reproduces the Zipf-Mandelbrot law, is r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008